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MOTION OF A HEAVY RIGID BODY ON A HORIZONTAL PLANE WITH VISCOUS FRICTION* 

The motion of an arbitrary, heavy rigid body on a horizontal plane with 
viscous friction is considered. It is shown that the limit set of trajec- 
tories of motion is represented by the set of motionsofthis body on a 
perfectly smooth surface without slippage. The set represents the inter- 
section of the manifolds of steady motions of the body on perfectly smooth 
and perfectly rough surfaces and, depending on the dynamic and geometrical 
characteristics of the body, it may include the states of equilibrium, 
steady rotations about the vertical , uniform rolling motions along a fixed 
straight line, and regular processions. Examples of the motion of specific 
bodies are discussed. 

N.K. MOSHCHUK 

1. Let a rigid body move along a fixed horizontal plane, touching it at a single point 
P of its surface. The motion takes place in a uniform gravitational field. The supporting 
plane is defined in the fixed OEnc coordinate system by the equation 5 = 0, andthe 05 
axis points vertically upwards. We shall introduce a right GZYZ, coordinate system rigidly 
fixed to the body, direct its axes along the principal central moments of inertia of the body, 
and place its origin at the centre of gravity of the body. We shall define the position of 
the body by the coordinates E, 11, 5 of its centre of gravity in the fixed coordinate system, 
and the Euler angles $,8,(~, defining the orientation of the body in absolute space. The 
coordinate c will be a known function of the angles 0 and q, i.e. <=f@,v)>O. We shall 
assume that the function f is a fairly smooth function of its arguments and such that the body 
can touch the supporting plane only at a single point of its surface. We will denote the 
projection of the centre of gravity G onto the supporting plane by Q. Henceforth, A,B, C 
will denote the moments of inertia of the body about the axes Gx,Gy,Gz,m is the mass of the 
body and g is the acceleration due to gravity. 

We have the following expression for 5‘: 

i' = Poe' + &U', pe = df,oe, pu = aftaq (1.1) 
The critical points of the function f@,(r) correspond to the positions of equilibrium 

of the body in the plane (P = Q,pe = pu = 0). Any body has at least two different positions of 
equilibrium. This follows from the fact that a function on a sphere has at least two critical 
points, 

Let US assume that the body is acted upon at the point P from the direction of the plane 
by the viscous force F = -mkVp, where VP is the velocity of the point P of the body in the 
fixed coordinate system, and k> 0 is the coefficient of friction. Then the following ex- 
pression can be obtained for the total energy E; 0 of the body: 

dE I dt = -mkVp2 (1.2) 

From (1.2) we see that E does not increase and VP tends to zero with time, i.e. the 
body has a tendency to avoid slipping /l/. Therefore we have 

lim E (t) = E* .> Y > 0, 
,-.cc 

Y = mg yin f (0, cp) (1.3) 
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If the function f(O,cp) 
describing the motion of the 
the phase coordinates. This 
initial values and the time. 

is analytic, the right-hand sides of the differential equations 
given non-conservative system will also depend analytically on 
implies that the solution will also depend analytically on the 

.* - -. 
consequently, the slippage will never cease completely (although 

VP(t) may borne zero), otherwise VP (1)~would not be an analytic function of t. 
The dissipative Rayleigh function has the form CE, = ‘12mkVpa; therefore the equations 

of motion of the body (not given in explicit form as they will not be needed) have the follow- 
ing property. If we put Vp = 0, in them, the terms depending on k will vanish, We also 
note that the coordinates F, and q do not appear explicitly in the equations of motion. 

Since E>O, and G.<O, the limit set 62 of the solutions of the equations of motion 
of a body along a plane, with viscous friction 121, will represent the maximum invariant set 
contained within the bounded region E&h of the phase space at whose points E'=O. But 
E' =O if and only if Vp = 0. Thus the maximum invariant set of the region E<,h, at whose 
points .Y =O, will be the set D of motions of the body in question on a perfectly smooth 
plane without slippage. The set 51 is asymptotically stable under any perturbations likely 
to arise during the motion of a body along a plane, with viscous friction, and invariant with 
respect to the phase flux defined by the equations of motion of the body along a plane of 
arbitrary roughness. 

To determine the set of limit motions of the body on a plane with viscous friction, we 
must separte, out of all motions of this body on a perfectly smooth surface, those motions 
for which VpE = V, = O. 

Let us give the expressions for the projections Vpa, Vp,, of the velocity of the point 

P of the body on the 0% and On axes 

V$lE = ri'+ F1 ecs~ - F,sin$, V, = 3’ -+- F3 sin 9 + (1.41 
F, cos$ 

F, = fcp’ sin I3 + Pe (4' T CF' cos O), P2 = fe‘ - p. (Ji' -t 
rp' cos @/sin O 

Using (1.4) we can write the conditions of no slippage in the form 

Using (1.1) and (1.5) 

and from (1.5) it follows 

F, = -O&n (cc +zi)), F, = -p cos (a +$) 

fi = 1/m, sina = F/p, cosa = S.&i 

we obtain the following expression for f': 

ff' = -fi [pe sin (cz -i_ $)/sin 9 + ps cos (a + Q)] 

that 

F,2 -+ F? = p’ 

Let us consider the motion of a body on a perfectly smooth surface. The coordinates 
f,q,$ are cyclical, and the problem reduces to the study of a Hamiltonian system with two 
degrees of freedom. The quantities E',n' are constant. The coordinate 9 is cyclical, and 
therefore relations (1.5) and (1.6) can only hold for the motions in which either 9' = 0, or 

$=O. The remaining limit motions reduce to the above motion, pr ovided that we redefine 
the axes of the attached coordinate system so that they again form a right triad, or when there 
is dynamic symmetry, we introduce the attached Gry2 coordinate system using another feasible 
method. Further search for the limit motions using the conditions (1.5)-(1.71, equations of 
motion and the first integrals, is not complicated. Only the following types of limit motions 
are possible. 

a) The manifold Q1 of the positions of equilibrium of the body. 
b) If one of the principal central axes of inertia of the body is orthogonal to its 

surface, then a manifold S& exists of the permanent rotations of the body about this axis, 
directed vertically. An exhaustive study of the stability of such motions is given in /3/. 

c) if a cross-section of the body surface perpendicular to one of the,principal central 
axes of inertia (e.g. Gz) contains a circumference, and the radius vector of a point lying 
on this circumference is orthogonal to the body surface relative to the centre of gXaVity G, 
then a manifold 52, of rotations of the body exists, in which the body rolls, with this 
cross-section running along a fixed straight line with constant velocity. The centxe of 

gravity lies above the point of contact. The conditions for these rotations to exist can be 
written analytically as f0110ws: 

a = O,#= 0, TI,$ = &8; = 0, pq (%,cp) = pe (O,, 9) = @ 

d) If one of the principal central axes of inertia of the body (e.g. Gz) represents the 

axis of dynamic symmetry, the cross-section of the body surface perpendicular to this axis 
contains a circumference and the radius vector of a point on this circumference is not 
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ortl-,ogonal to the body surface relative to the centre of gravity G, then a manifold Qr of 
regular precessions exists, The conditions for regular precessions to exist have the following 

analytic form /3/: 

A = 3, 8 = f& p+p @,, fpf = 0, IAf*cos6& -j- c (pe Pill6,- 

fo co.5 UPa> 0 

The stability of such motions was investigated in /3/ under the assumption that p,, S 0. 
We note that in al.1 motions mentioned above the height of the centre of gravity above 

the supporting plane is constant, i.e. f- const. 
The set Q = C& U $2, IJ !&ii Q, of limit motions of the body represents a set of all 

motions of the body on a plane with viscous friction , without energy dissipation. The classi- 
fication given here implies that /3/ a lies on the intersection of the manifolds of steady 
motions of the body on a perfectly smooth and a perfectly rough surface. Hence, all possible 
steady motions are contained within $2. The motions have been studied in some detail in /3/. 

In the general case the limit motions of the body can only be represented by the positions 
of equilibrium, and the body has at least two positions. The position of equilibrfum in which 
the function of height f(e,g) has a strict local minimum , is clearly Lyapunov stable. If 

on the other hand the function f(& rp) has no local minimum in the position of equilibrium, 
then the equilibrium is unstable /3/. 

The structure of the set $2, can be determined for every concrete body, taking into 
account its geometrical and dynamic characteristics. This means representing Q as a union 
of the pairwise non-intexsecting manifoJds Q,...,s;Z,. Every manifold Qt will be character- 
ized by a certain number of parameters. However, the fact that a given trajectory tends to 
the manifold Pi, does not, generally speaking, imply that it tends to a particular trajectory 
belonging to ~2~. All. the same* from 11.3) it follows that the total energy of the body has 
a limit value. Therefore, if $& represents a one-parameter manifold of motions, then the 
fact that a trajectory tends to Q,, will imply that it tends to a particular trajectory of 

9,. For example, in lzhe case of a homogeneous triaxial ellipsoid the limit value can only 
be represented by a permanent rotation with specified angular velocity about one of its axes 
directed vertically (since only then is f = con&). The tendency of the ellipsoid to rotate 
about the largest axis directed vertically has been studied in /4/. 

Dn the other hand, if the manifold Qi is two-parameter r condition CL.31 will enable 
us to determine which of the parameters has a limit value and for which "hunting" is possible. 
For example, for a solid of revolution far which pe vanishes in the interval (O,n) at least 
once, a two-parameter manifold QI, of rolling motions of the body along a straight line exists. 
The suitable parameters would be the angle qO and the angular velocity of rotation cp' = 0. 
From (1.3) it follows that the magnitude of the angular velocity of the body tends to 0 as 
t-coo, and though hunting is possible in 9 , its rate tends to zero, 

The determination of the set &, corresponding to the given set of initial data represents 
a theoretically complex task. The problem can be solved e.g. on a digital computer (in the 
present case Cmputing fn a fairly 1Qng time interval makes it possible to determine near 
which invariant set $2, the trajectory has emerged) , or using asymptotic methods. 

Let the friction be small, i.e. 0 < k]/d(mg*) * 1, and let the body be dynamically and 
geometrically symmetric (a solid of revolution). Then A = B,p, ~00. The equations of motion 
can be conveniently studied in terms of the variables E'* I~'$ .&?,u,v,@,@'l+ fsf 

Here v, u are projections of the kinetic momentum vector of the body about its centre 
of gravity, on the vertical and on the axis of symmetry of the body, and &e = @f(e)f&P. The 
unperturbed motion (k = 0) is a motion of the solid of revolution on a smooth plane, and has 
been studied in some detail in /l, 6/. If we eliminate the positions of equilibrium and the 
motions along the separatrix, the function B(t) will be periodic in the unperturbed motion 
and ip(t) will admit the representation 

$ 0) = St + $1 09 (1.9) 
where the constant Xs depends on E,u,v, and the functions 0(t) and (II(t) are pesiodic, 
with the same period 7, with the time-averaged value of the function 91 @) We shall study the perturbed motion (k# 0) using the method of averaging 

e ual 
9 

to zero. 
7/. 
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Intheperturbedmotionthevariables E,u,v,E’, 9’ axe slow, while 0 and 9 are fast. In the 
non-resonant case, i.e. when $+2nn/r(a=0,1.. .), 
dependent averaging over 'P and wer 8, 

time avaraging can be replaced by in- 
where 8 is a function of time, and the slow vari- 

ables E, u,v. From (1.4) we see that (Vpk) = E’, <I’,> = q’ 
After averaging, system (1.8) takes the form 

(angle brackets denote averaging). 

E” = -kF, q” = -_krl’, E’ = -mk(rg + 1’2 +:<F,S +Fp*)) (1.10) 
y’ = -mk <peF,>, u’ = -mk <(f sin 8 + pe cos e) F>> 

The first two equations of (1.10) are easily integrated, and the last three fox a closed 
system. We find that the velocity of the centre of gravity of the body tends to zero with 
time, i-e. for sufficiently small k the limit set of the trajectories of motion in the non- 
resonant case represents the motions from Q with zero (or almost zero) velocity of the 
centre of gravity. Consequently, in Order for the final motion to be a motion from 91% it 
is necessary that b and 2=/z be connected by the resonance relations AC = Bnnlz (n = 0, 
1 . . .). 

The limit motions Of the solid of revolution will be the motions described in a) - c). 
This can be confirmed by equating the expressions for 0 obtained from (1.7), with those 
obtained from the expression for the total energy (given e.g. in /l/i. ThiS yields a relation 
connecting the first integrals E, u,v with the angle 8. It is evident that in general this 
relation implies that @ = con& Bodies for which pa(B)= 0 is some range of variation of 
the angle 8 are the only exception. For Such bodies rolling motions will exist during which 
the body will rotate uniformly about the Gr or Gv axes (see the example below). 

2. We shall consider themotion,with viscous friction , of a heavy sphere on a plane. 
We assume that the centre of gravity of the sphere coincides with its geometrical centre and 
that A>B>C. Let G,, G,, G, be the projections of the kinetic moment G of the sphere 
about its centre, on the g,q, 5 axes respectively. The kinetic moment vector of the sphere 
relative to the point of contact is retained, and therefore 

G, - mRq’ = K,, G, + rnRr = K,, G, = K, (2.1) 

Here R is the radius of the sphere and Ri = const(i = 1,2,3). We Shall also use the 
variables x = 2T/G2, 1/A <,<x ,QliC(T is the kinetic energy of motion of the sphere relative 
to the centre of gravity). 

The motion of such a sphere on a perfectly smooth plane is composed of a uniform recti- 
linear motion of the centre of gravity of the sphere , and of the Euler-Poinsot motion about 
the centre of gravity. Let us separate the motions in which V_P~ = Vp,, = Cl, since VluE = E‘- 
%R, VP,, = q’ + o$? to:, w, are the projections of the vector o on the O& and On) axes. 
Then we find at once that for such motions 0~ and u)n must be constant. The geometrical 
Poinsot interpretation shows clearly that the motions sought can only be the rotations about 
one of the principal axes of inertia. This axis will have an arbitrary orientation in absolute 
space and the velocity components of the point P will compensate each other by virtue of the 
rotation and translation of the centre of gravity. Consequently, the motion of the sphere 
about one of the principal axes of inertia will be its limit motion. The sphere will tend 
asymptotically to this motion, without attaining it. 

Let us direct GZ along this axes , with I denoting the moment of inertia about &(I = 

4R.C). We denote by e,,s,, to', n;, cp," = o the parameters of this motion. The paxameters 
are connected with the first integral Ri in the following manner: 

161 sines sinql, - ml??; = K,, ---losin ea608*‘o 4 (2.2) 
rnR&,. = K,, zw C~S 8, = K, 

The no-slippage conditions are written in the farm 

E,'+mRsine,cos$,=O, n;+oRsin%,sinIpO=O 12.3) 

From (2.21, (2.3) it follows that the parameters of the final motion 80i,$e. W. &',n,' 
can be expressed uniquely in terms of the first integrals KC (the simple case K, = K? = 
K,= 0 is the exception). It only remains unresolved, about which axis of the body the 

rotation will take place (i.e. to which of the three possible values 1,'A, 1/B, 1/C t ‘)t will 

tend). 
When k are small, the method of avaraging can be used to show /8/ that for any initial 

conditions from the region +/A (x( 1/B and for most initial conditions from the r%gion 

iJB Cx C 1/C, the sphere will tend to a rotation about the axis of the largest moment of 
inertia, i.e. I=A,x--ti!A as t+m. 

We also obtain the following corollary. A rolling motion of the sphere during which it 
rotates about the axis of greatest moment of inertia on a plane with low viscous friction, is 
stable relative to the variables e,e’,tp,*-, cp’. f’,q’,x, and asymptotically stable with respect 

to the variable x. The rotations of the sphere about the axis of the smallest and meanmoment 
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inertia are unstable. 
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THE STABILITY OF NEUTRAL SYSTEMS IN THE CASE OF A MULTTPLE 
FOURTH-ORDER RESONANCE* 

A.L. KUNITSYN and A.A. PEPEZHOGIN 

The stability of the steady motions of multiparametric systems is investi- 
gated for the critical case of N pairs of purely imaginary roots when 
several internal fourth-order resonances interact with each other. The 
earlier investigations (see the survey /l/) covered only the interaction 
of odd-order resonances. In general, the problem of stability when there 
are even-order resonances is more complicated; even in the case of the 
simplest, single fourth-order resonance there is no algebraic criterion 
of stability /2/. 

1. Consider a system of 2N-th order for the critical case of N pairs of different, 
purely imaginary roots t_hj(hj2 < 0;j = 1.. . ..A’). which can be written in the form /l/ 

9 

fL’=?d -i- j* UC” (u, I$ u’ zzc - hu + x V(f) (u, u) (1.1) 
1=2 

h = diag (h,, . . ., AR) 

where u = (u,, . . ,. MN). U = (II,, . ., UN) are complex conjugate variables and u(l), V(‘l are complex 
conjugate vector forms of the I-th order. 

Let the first n < N eigenvalues of system (1.1) be connected by x fourth-order 
resonance relations 

(P,,. _I> = 0, P = I, . . . , x (1.2) 

Here A=(&. . . . . &,) is the eigenvalue vector and I', = (pv,, . . ., &,,)is an integer-valued 
vector with relatively prime components, some of which may beequalto zero, and 1 P, 1~ ( pvl \ + 

. . . + I pm I = 4. We shall also assume that (1.2) does not give rise to other resonances of 
the same order and that there are not resonances of the order less than the fourth. 

Following the generally accepted method of investigating the stability in the resonant, 
as well as in the non-resonant case, we will use a series of known variable substitutions /l/ 
to reduce system (1.1) to its normal form with an accuracy up to and including third-order 
terms. In the polar coordinates rj, cpj the system will have the form 
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